1. <mark id="klrtx"></mark>

        <output id="klrtx"><track id="klrtx"></track></output>

        1. <sup id="klrtx"></sup><tr id="klrtx"><small id="klrtx"><acronym id="klrtx"></acronym></small></tr>

              <tr id="klrtx"><nobr id="klrtx"></nobr></tr>

            1. 
              
              1. <ins id="klrtx"><video id="klrtx"></video></ins>

                1. <tr id="klrtx"></tr>
                  <tr id="klrtx"><nobr id="klrtx"><ol id="klrtx"></ol></nobr></tr>

                  1. <menuitem id="klrtx"></menuitem>
                    1. <menuitem id="klrtx"></menuitem>
                      <noframes id="klrtx"><small id="klrtx"></small></noframes>
                        1. <ins id="klrtx"></ins>
                          1. <ins id="klrtx"><option id="klrtx"></option></ins>
                          2. <sup id="klrtx"><small id="klrtx"></small></sup>

                          3. <code id="klrtx"></code>
                            1. <tr id="klrtx"><small id="klrtx"></small></tr>
                              1. <tr id="klrtx"></tr>
                                <small id="klrtx"></small>

                                基于EMD分解的聚類樹狀圖軸承故障診斷
                                張梅軍,韓思晨,王闖,焦志鑫
                                (解放軍理工大學 工程兵工程學院,江蘇 南京 210007)
                                摘要:針對滾動軸承故障振動信號的非平穩特征和故障征兆模糊性,提出了基于EMD和動態模糊聚類圖的軸承故障診斷方法。運用EMD方法提取待診斷的軸承運行狀態樣本的能量特征指標,應用模糊聚類分析方法對特征參數進行聚類,并作出聚類樹狀圖。結果表明,該方法不需要大量的樣本進行學習,且能更直觀、準確識別滾動軸承的運行狀態。
                                關鍵詞:EMD分解;動態模糊聚類圖;故障診斷
                                中圖分類號:O242.21        文獻標識碼:A         文章編號:10060316 (2012) 07000104
                                Clustering based on EMD decomposition tree bearing fault diagnosis
                                ZHANG Mei-jun,HAN Si-chen,WANG Chuang,JIAO Zhi-xin
                                (Engineering Institute of Engineering Corps,PLA University of Science,Nanjing 210007,China)
                                Abstract:For the non-stationary feature of a vibration signal of defective rolling bearings and the ambiguity of fault feature, a fault diagnosis method of rolling bearings is proposed using EMD ( Empirical Mode Decomposition ), Dynamic fuzzy clustering graph. Firstly, an EMD method was used to decompose a vibration signal of a rolling bearing. Then those parameters were analyzed by fuzzy clustering algorithm, and plotted amic fuzzy clustering graph. Experiments indicated that This method does not require a large number of samples for learning, and And can more intuitivelt, accurately distinguish the running state of bearings.
                                Key wordsemp iricalmode decomposition ( EMD );dynamic fuzzy clustering graph;fault diagnosis

                                ———————————————
                                收稿日期:2011-02-29
                                基金項目:國家自然科學基金資助項目(51175511)
                                作者簡介:張梅軍(1958-),女,江蘇宜興人,副教授,碩士生導師,主要研究方向為故障診斷和工程機械動力學。

                                 

                                設為首頁  |  加入收藏    |   免責條款
                                《機械》雜志版權所有     Copyright©2008-2012 www.nxkyz.com All Rights Reserved 

                                  電話:028-85925070    傳真:028-85925073    E-mail:jixie@vip.163.com

                                地址:四川省成都錦江工業開發區墨香路48號   郵編:610063

                                蜀ICP備08103512號

                                Powered by PageAdmin CMS
                                顶级欧美熟妇高清XXXXX